Nelder Mead#
This algorithm is implemented based on [14]. In addition to other implementations, a boundary check is included. This ensures that the search considers the box constraints of the given optimization problem. If no boundaries are provided, the algorithm falls back to a search without any constraints.
[1]:
from pymoo.algorithms.soo.nonconvex.nelder import NelderMead
from pymoo.problems import get_problem
from pymoo.optimize import minimize
problem = get_problem("sphere")
algorithm = NelderMead()
res = minimize(problem,
algorithm,
seed=1,
verbose=False)
print("Best solution found: \nX = %s\nF = %s" % (res.X, res.F))
Best solution found:
X = [0.5007057 0.50020581 0.49999148 0.50029146 0.50000737 0.49950648
0.50019156 0.49978683 0.50017533 0.49983613]
F = [1.00874476e-06]
API#
- class pymoo.algorithms.soo.nonconvex.nelder.NelderMead(init_simplex_scale=0.05, func_params=<function adaptive_params>, output=<pymoo.util.display.single.SingleObjectiveOutput object>, **kwargs)[source]