Nelder Mead¶
This algorithm is implemented based on [20]. In addition to other implementations, a boundary check is included. This ensures that the search considers the box constraints of the given optimization problem. If no boundaries are provided the algorithm falls back to a search without any constraints.
[1]:
from pymoo.algorithms.soo.nonconvex.nelder import NelderMead
from pymoo.problems import get_problem
from pymoo.optimize import minimize
problem = get_problem("sphere")
algorithm = NelderMead()
res = minimize(problem,
algorithm,
seed=1,
verbose=False)
print("Best solution found: \nX = %s\nF = %s" % (res.X, res.F))
Best solution found:
X = [0.49961501 0.49977501 0.49972263 0.50021479 0.5002991 0.50013549
0.50071827 0.49980186 0.49952684 0.49985548]
F = [1.22965166e-06]
API¶
-
class
pymoo.algorithms.soo.nonconvex.nelder.
NelderMead
(init_simplex_scale=0.05, func_params=<function adaptive_params>, output=<pymoo.util.display.single.SingleObjectiveOutput object>, **kwargs)