DF: Benchmark Problems for CEC2018 Competition on Dynamic Multiobjective Optimisation#
The problem suite is implemented based on [12].
DF1#
[1]:
import numpy as np
from pymoo.problems.dynamic.df import DF1
from pymoo.visualization.scatter import Scatter
plot = Scatter()
for t in np.linspace(0, 10.0, 100):
problem = DF1(time=t)
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.show()
[1]:
<pymoo.visualization.scatter.Scatter at 0x107dd50f0>
DF2#
[2]:
from pymoo.problems.dynamic.df import DF2
plot = Scatter()
for t in np.linspace(0, 10.0, 100):
problem = DF2(time=t)
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.show()
[2]:
<pymoo.visualization.scatter.Scatter at 0x10bff9ae0>
DF3#
[3]:
from pymoo.problems.dynamic.df import DF3
plot = Scatter()
for t in np.linspace(0, 10.0, 100):
problem = DF3(time=t)
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.show()
[3]:
<pymoo.visualization.scatter.Scatter at 0x10c177bb0>
DF4#
[4]:
from pymoo.problems.dynamic.df import DF4
plot = Scatter()
for t in np.linspace(0, 10.0, 100):
problem = DF4(time=t)
plot.add(problem.pareto_front() + 2*t, plot_type="line", color="black", alpha=0.7)
plot.show()
[4]:
<pymoo.visualization.scatter.Scatter at 0x10c2cfbe0>
DF5#
[5]:
from pymoo.problems.dynamic.df import DF5
plot = Scatter()
for t in np.linspace(0, 2.0, 100):
problem = DF5(time=t)
plot.add(problem.pareto_front(n_pareto_points=300) + 2*t, plot_type="line", color="black", alpha=0.7)
plot.show()
[5]:
<pymoo.visualization.scatter.Scatter at 0x10c463490>
DF6#
[6]:
from pymoo.problems.dynamic.df import DF6
plot = Scatter()
for t in np.linspace(0, 2.0, 100):
problem = DF6(time=t)
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.show()
[6]:
<pymoo.visualization.scatter.Scatter at 0x10c5826b0>
DF7#
[7]:
from pymoo.problems.dynamic.df import DF7
plot = Scatter()
for t in np.linspace(0, 1.0, 20):
problem = DF7(time=t)
plot.add(problem.pareto_front() + 2*t, plot_type="line", color="black", alpha=0.7)
plot.show()
[7]:
<pymoo.visualization.scatter.Scatter at 0x10c78e5c0>
DF8#
[8]:
from pymoo.problems.dynamic.df import DF8
plot = Scatter()
for t in np.linspace(0, 2.0, 20):
problem = DF8(time=t)
plot.add(problem.pareto_front() + 4*t, plot_type="line", color="black", alpha=0.7)
plot.show()
[8]:
<pymoo.visualization.scatter.Scatter at 0x10c0e3ac0>
DF9#
[9]:
from pymoo.problems.dynamic.df import DF9
plot = Scatter()
for t in np.linspace(0, 2.0, 20):
problem = DF9(time=t)
plot.add(problem.pareto_front() + 2*t, plot_type="line", color="black", alpha=0.7)
plot.show()
[9]:
<pymoo.visualization.scatter.Scatter at 0x10c898580>
DF10#
[10]:
from pymoo.problems.dynamic.df import DF10
import matplotlib.pyplot as plt
for t in [0.0, 1.0, 1.5, 2.0]:
plot = Scatter()
problem = DF10(time=t)
plot.add(problem.pareto_front() + 2*t, plot_type="line", color="black", alpha=0.7)
plot.do()
plt.show()
print("DONE")
DONE
DF11#
[11]:
from pymoo.problems.dynamic.df import DF11
import matplotlib.pyplot as plt
for t in [0.0, 1.0, 1.5, 2.0]:
plot = Scatter()
problem = DF11(time=t)
plot.add(problem.pareto_front() + 2*t, plot_type="line", color="black", alpha=0.7)
plot.do()
plt.show()
print("DONE")
DONE
DF12#
[12]:
from pymoo.problems.dynamic.df import DF12
import matplotlib.pyplot as plt
for t in [0.0, 0.1, 0.2]:
plot = Scatter()
problem = DF12(time=t)
plot.add(problem.pareto_front() + 2*t, color="black", alpha=0.7)
plot.do()
plt.show()
print("DONE")
DONE
DF13#
[13]:
from pymoo.problems.dynamic.df import DF13
import matplotlib.pyplot as plt
for t in [0.0, 0.2, 0.3, 0.4]:
plot = Scatter()
problem = DF13(time=t)
plot.add(problem.pareto_front() + 2*t, color="black", alpha=0.7)
plot.do()
plt.show()
print("DONE")
DONE
DF14#
[14]:
from pymoo.problems.dynamic.df import DF14
import matplotlib.pyplot as plt
for t in [0.0, 0.2, 0.5, 1.0]:
plot = Scatter()
problem = DF14(time=t)
plot.add(problem.pareto_front() + 2*t, color="black", alpha=0.7)
plot.do()
plt.show()
print("DONE")
DONE