Source code for pymoo.algorithms.moo.nsga2

import numpy as np
import warnings

from pymoo.algorithms.base.genetic import GeneticAlgorithm
from pymoo.docs import parse_doc_string
from pymoo.operators.crossover.sbx import SBX
from pymoo.operators.mutation.pm import PM
from pymoo.operators.survival.rank_and_crowding import RankAndCrowding
from pymoo.operators.sampling.rnd import FloatRandomSampling
from pymoo.operators.selection.tournament import compare, TournamentSelection
from pymoo.termination.default import DefaultMultiObjectiveTermination
from pymoo.util.display.multi import MultiObjectiveOutput
from pymoo.util.dominator import Dominator
from pymoo.util.misc import has_feasible


# ---------------------------------------------------------------------------------------------------------
# Binary Tournament Selection Function
# ---------------------------------------------------------------------------------------------------------


def binary_tournament(pop, P, algorithm, **kwargs):
    n_tournaments, n_parents = P.shape

    if n_parents != 2:
        raise ValueError("Only implemented for binary tournament!")

    tournament_type = algorithm.tournament_type
    S = np.full(n_tournaments, np.nan)

    for i in range(n_tournaments):

        a, b = P[i, 0], P[i, 1]
        a_cv, a_f, b_cv, b_f = pop[a].CV[0], pop[a].F, pop[b].CV[0], pop[b].F
        rank_a, cd_a = pop[a].get("rank", "crowding")
        rank_b, cd_b = pop[b].get("rank", "crowding")

        # if at least one solution is infeasible
        if a_cv > 0.0 or b_cv > 0.0:
            S[i] = compare(a, a_cv, b, b_cv, method='smaller_is_better', return_random_if_equal=True, random_state=algorithm.random_state)

        # both solutions are feasible
        else:

            if tournament_type == 'comp_by_dom_and_crowding':
                rel = Dominator.get_relation(a_f, b_f)
                if rel == 1:
                    S[i] = a
                elif rel == -1:
                    S[i] = b

            elif tournament_type == 'comp_by_rank_and_crowding':
                S[i] = compare(a, rank_a, b, rank_b, method='smaller_is_better')

            else:
                raise Exception("Unknown tournament type.")

            # if rank or domination relation didn't make a decision compare by crowding
            if np.isnan(S[i]):
                S[i] = compare(a, cd_a, b, cd_b, method='larger_is_better', return_random_if_equal=True, random_state=algorithm.random_state)

    return S[:, None].astype(int, copy=False)


# ---------------------------------------------------------------------------------------------------------
# Survival Selection
# ---------------------------------------------------------------------------------------------------------


class RankAndCrowdingSurvival(RankAndCrowding):
    
    def __init__(self, nds=None, crowding_func="cd"):
        super().__init__(nds, crowding_func)

# =========================================================================================================
# Implementation
# =========================================================================================================


[docs] class NSGA2(GeneticAlgorithm): def __init__(self, pop_size=100, sampling=FloatRandomSampling(), selection=TournamentSelection(func_comp=binary_tournament), crossover=SBX(eta=15, prob=0.9), mutation=PM(eta=20), survival=RankAndCrowding(), output=MultiObjectiveOutput(), **kwargs): super().__init__( pop_size=pop_size, sampling=sampling, selection=selection, crossover=crossover, mutation=mutation, survival=survival, output=output, advance_after_initial_infill=True, **kwargs) self.termination = DefaultMultiObjectiveTermination() self.tournament_type = 'comp_by_dom_and_crowding' def _set_optimum(self, **kwargs): if not has_feasible(self.pop): self.opt = self.pop[[np.argmin(self.pop.get("CV"))]] else: self.opt = self.pop[self.pop.get("rank") == 0]
parse_doc_string(NSGA2.__init__)