Source code for pymoo.algorithms.moo.sms

import numpy as np

from pymoo.algorithms.base.genetic import GeneticAlgorithm
from pymoo.core.population import Population
from pymoo.core.survival import Survival
from pymoo.docs import parse_doc_string
from pymoo.indicators.hv.exact import ExactHypervolume
from pymoo.indicators.hv.exact_2d import ExactHypervolume2D
from pymoo.indicators.hv.approximate import ApproximateHypervolume
from pymoo.operators.crossover.sbx import SBX
from pymoo.operators.mutation.pm import PM
from pymoo.operators.sampling.rnd import FloatRandomSampling
from pymoo.operators.selection.tournament import compare, TournamentSelection
from pymoo.util.display.multi import MultiObjectiveOutput
from pymoo.util.dominator import Dominator
from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting
from pymoo.util.normalization import normalize
from pymoo.util import default_random_state


# ---------------------------------------------------------------------------------------------------------
# Environmental Survival - Remove the solution with the least HV contribution
# ---------------------------------------------------------------------------------------------------------


class LeastHypervolumeContributionSurvival(Survival):

    def __init__(self, eps=10.0) -> None:
        super().__init__(filter_infeasible=True)
        self.eps = eps

    def _do(self, problem, pop, *args, n_survive=None, ideal=None, nadir=None, random_state=None, **kwargs):

        # get the objective space values and objects
        F = pop.get("F").astype(float, copy=False)

        # if the boundary points are not provided -> estimate them from pop
        if ideal is None:
            ideal = F.min(axis=0)
        if nadir is None:
            nadir = F.max(axis=0)

        # the number of objectives
        _, n_obj = F.shape

        # the final indices of surviving individuals
        survivors = []

        # do the non-dominated sorting until splitting front
        fronts = NonDominatedSorting().do(F, n_stop_if_ranked=n_survive)

        for k, front in enumerate(fronts):

            # get the actual front as individuals
            front = pop[front]
            front.set("rank", k)

            if len(survivors) + len(front) > n_survive:

                # normalize all the function values for the front
                F = front.get("F")
                F = normalize(F, ideal, nadir)

                # define the reference point and shift it a bit - F is already normalized!
                ref_point = np.full(problem.n_obj, 1.0 + self.eps)

                _, n_obj = F.shape

                # choose the suitable hypervolume method
                clazz = ExactHypervolume
                if n_obj == 2:
                    clazz = ExactHypervolume2D
                elif n_obj > 3:
                    clazz = ApproximateHypervolume

                # finally do the computation
                hv = clazz(ref_point).add(F)

                # current front sorted by crowding distance if splitting
                while len(survivors) + len(front) > n_survive:
                    k = hv.hvc.argmin()
                    hv.delete(k)
                    front = np.delete(front, k)

            # extend the survivors by all or selected individuals
            survivors.extend(front)

        return Population.create(*survivors)


# ---------------------------------------------------------------------------------------------------------
# Binary Tournament
# ---------------------------------------------------------------------------------------------------------


@default_random_state
def cv_and_dom_tournament(pop, P, *args, random_state=None, **kwargs):
    n_tournaments, n_parents = P.shape

    if n_parents != 2:
        raise ValueError("Only implemented for binary tournament!")

    S = np.full(n_tournaments, np.nan)

    for i in range(n_tournaments):

        a, b = P[i, 0], P[i, 1]
        a_cv, a_f, b_cv, b_f, = pop[a].CV[0], pop[a].F, pop[b].CV[0], pop[b].F

        # if at least one solution is infeasible
        if a_cv > 0.0 or b_cv > 0.0:
            S[i] = compare(a, a_cv, b, b_cv, method='smaller_is_better', return_random_if_equal=True, random_state=random_state)

        # both solutions are feasible
        else:

            # if one dominates another choose the nds one
            rel = Dominator.get_relation(a_f, b_f)
            if rel == 1:
                S[i] = a
            elif rel == -1:
                S[i] = b

            # if rank or domination relation didn't make a decision compare by crowding
            if np.isnan(S[i]):
                S[i] = random_state.choice([a, b])

    return S[:, None].astype(int, copy=False)


# ---------------------------------------------------------------------------------------------------------
# Algorithm
# ---------------------------------------------------------------------------------------------------------

[docs] class SMSEMOA(GeneticAlgorithm): def __init__(self, pop_size=100, sampling=FloatRandomSampling(), selection=TournamentSelection(func_comp=cv_and_dom_tournament), crossover=SBX(), mutation=PM(), survival=LeastHypervolumeContributionSurvival(), eliminate_duplicates=True, n_offsprings=None, normalize=True, output=MultiObjectiveOutput(), **kwargs): """ Parameters ---------- pop_size : {pop_size} sampling : {sampling} selection : {selection} crossover : {crossover} mutation : {mutation} eliminate_duplicates : {eliminate_duplicates} n_offsprings : {n_offsprings} """ super().__init__(pop_size=pop_size, sampling=sampling, selection=selection, crossover=crossover, mutation=mutation, survival=survival, eliminate_duplicates=eliminate_duplicates, n_offsprings=n_offsprings, output=output, advance_after_initial_infill=True, **kwargs) self.normalize = normalize def _advance(self, infills=None, **kwargs): ideal, nadir = None, None # estimate ideal and nadir from the current population (more robust then from doing it from merged) if self.normalize: F = self.pop.get("F") ideal, nadir = F.min(axis=0), F.max(axis=0) + 1e-32 # merge the offsprings with the current population if infills is not None: pop = Population.merge(self.pop, infills) else: pop = self.pop self.pop = self.survival.do(self.problem, pop, n_survive=self.pop_size, algorithm=self, ideal=ideal, nadir=nadir, random_state=self.random_state, **kwargs)
parse_doc_string(SMSEMOA.__init__)