Source code for pymoo.core.algorithm

import copy
import time

import numpy as np

from pymoo.core.callback import Callback
from pymoo.core.evaluator import Evaluator
from pymoo.core.meta import Meta
from pymoo.core.population import Population
from pymoo.core.result import Result
from pymoo.functions import FunctionLoader
from pymoo.termination.default import DefaultMultiObjectiveTermination, DefaultSingleObjectiveTermination
from pymoo.util.display.display import Display
from pymoo.util.misc import termination_from_tuple
from pymoo.util.optimum import filter_optimum


[docs] class Algorithm: def __init__(self, termination=None, output=None, display=None, callback=None, archive=None, return_least_infeasible=False, save_history=False, verbose=False, seed=None, evaluator=None, **kwargs): super().__init__() # prints the compile warning if enabled FunctionLoader.get_instance() # the problem to be solved (will be set later on) self.problem = None # the termination criterion to be used by the algorithm - might be specific for an algorithm self.termination = termination # the text that should be printed during the algorithm run self.output = output # an archive kept during algorithm execution (not always the same as optimum) self.archive = archive # the form of display shown during algorithm execution self.display = display # callback to be executed each generation if callback is None: callback = Callback() self.callback = callback # whether the algorithm should finally return the least infeasible solution if no feasible found self.return_least_infeasible = return_least_infeasible # whether the history should be saved or not self.save_history = save_history # whether the algorithm should print output in this run or not self.verbose = verbose # the random seed that was used self.seed = seed self.random_state = None # the function evaluator object (can be used to inject code) if evaluator is None: evaluator = Evaluator() self.evaluator = evaluator # the history object which contains the list self.history = list() # the current solutions stored - here considered as population self.pop = None # a placeholder object for implementation to store solutions in each iteration self.off = None # the optimum found by the algorithm self.opt = None # the current number of generation or iteration self.n_iter = None # can be used to store additional data in submodules self.data = {} # if the initialized method has been called before or not self.is_initialized = False # the time when the algorithm has been setup for the first time self.start_time = None def setup(self, problem, verbose=False, progress=False, **kwargs): # the problem to be solved by the algorithm self.problem = problem # clone the output object if it exists to avoid state pollution between runs if self.output is not None: self.output = copy.deepcopy(self.output) # set all the provided options to this method for key, value in kwargs.items(): self.__dict__[key] = value # set random state self.random_state = np.random.default_rng(self.seed) # make sure that some type of termination criterion is set if self.termination is None: self.termination = default_termination(problem) else: self.termination = termination_from_tuple(self.termination) # set up the display during the algorithm execution if self.display is None: self.display = Display(self.output, verbose=verbose, progress=progress) # finally call the function that can be overwritten by the actual algorithm self._setup(problem, **kwargs) return self def run(self): while self.has_next(): self.next() return self.result() def has_next(self): return not self.termination.has_terminated() def finalize(self): # finalize the display output in the end of the run self.display.finalize() return self._finalize() def next(self): # get the infill solutions infills = self.infill() # call the advance with them after evaluation if infills is not None: self.evaluator.eval(self.problem, infills, algorithm=self) self.advance(infills=infills) # if the algorithm does not follow the infill-advance scheme just call advance else: self.advance() def _initialize(self): # the time starts whenever this method is called self.start_time = time.time() # set the attribute for the optimization method to start self.n_iter = 1 self.pop = Population.empty() self.opt = None def infill(self): if self.problem is None: raise Exception("Please call `setup(problem)` before calling next().") # the first time next is called simply initial the algorithm - makes the interface cleaner if not self.is_initialized: # hook mostly used by the class to happen before even to initialize self._initialize() # execute the initialization infill of the algorithm infills = self._initialize_infill() else: # request the infill solutions if the algorithm has implemented it infills = self._infill() # set the current generation to the offsprings if infills is not None: infills.set("n_gen", self.n_iter) infills.set("n_iter", self.n_iter) return infills def advance(self, infills=None, **kwargs): # if infills have been provided set them as offsprings and feed them into advance self.off = infills # if the algorithm has not been already initialized if not self.is_initialized: # set the generation counter to 1 self.n_iter = 1 # assign the population to the algorithm self.pop = infills # do what is necessary after the initialization self._initialize_advance(infills=infills, **kwargs) # set this algorithm to be initialized self.is_initialized = True # always advance to the next iteration after initialization self._post_advance() else: # call the implementation of the advance method - if the infill is not None val = self._advance(infills=infills, **kwargs) # always advance to the next iteration - except if the algorithm returns False if val is None or val: self._post_advance() # if the algorithm has terminated, then do the finalization steps and return the result if self.termination.has_terminated(): self.finalize() ret = self.result() # otherwise just increase the iteration counter for the next step and return the current optimum else: ret = self.opt # add the infill solutions to an archive if self.archive is not None and infills is not None: self.archive = self.archive.add(infills) return ret def result(self): res = Result() # store the time when the algorithm as finished res.start_time = self.start_time res.end_time = time.time() res.exec_time = res.end_time - res.start_time res.pop = self.pop res.archive = self.archive res.data = self.data # get the optimal solution found opt = self.opt if opt is None or len(opt) == 0: opt = None # if no feasible solution has been found elif not np.any(opt.get("FEAS")): if self.return_least_infeasible: opt = filter_optimum(opt, least_infeasible=True) else: opt = None res.opt = opt # if optimum is set to none to not report anything if res.opt is None: X, F, CV, G, H = None, None, None, None, None # otherwise get the values from the population else: X, F, CV, G, H = self.opt.get("X", "F", "CV", "G", "H") # if single-objective problem and only one solution was found - create a 1d array if self.problem.n_obj == 1 and len(X) == 1: X, F, CV, G, H = X[0], F[0], CV[0], G[0], H[0] # set all the individual values res.X, res.F, res.CV, res.G, res.H = X, F, CV, G, H # create the result object res.problem = self.problem res.history = self.history return res def ask(self): return self.infill() def tell(self, *args, **kwargs): return self.advance(*args, **kwargs) def _set_optimum(self): self.opt = filter_optimum(self.pop, least_infeasible=True) def _post_advance(self): # update the current optimum of the algorithm self._set_optimum() # update the current termination condition of the algorithm self.termination.update(self) # display the output if defined by the algorithm self.display(self) if self.save_history: _hist, _callback, _display = self.history, self.callback, self.display self.history, self.callback, self.display = None, None, None obj = copy.deepcopy(self) self.history, self.callback, self.display = _hist, _callback, _display self.history.append(obj) # if a callback function is provided it is called after each iteration self.callback(self) self.n_iter += 1 # ========================================================================================================= # TO BE OVERWRITTEN # ========================================================================================================= def _setup(self, problem, **kwargs): pass def _initialize_infill(self): pass def _initialize_advance(self, infills=None, **kwargs): pass def _infill(self): pass def _advance(self, infills=None, **kwargs): pass def _finalize(self): pass # ========================================================================================================= # CONVENIENCE # ========================================================================================================= @property def n_gen(self): return self.n_iter @n_gen.setter def n_gen(self, value): self.n_iter = value
class LoopwiseAlgorithm(Algorithm): def __init__(self, **kwargs): super().__init__(**kwargs) self.generator = None self.state = None def _next(self): pass def _infill(self): if self.state is None: self._advance() return self.state def _advance(self, infills=None, **kwargs): if self.generator is None: self.generator = self._next() try: self.state = self.generator.send(infills) except StopIteration: self.generator = None self.state = None return True return False def default_termination(problem): if problem.n_obj > 1: termination = DefaultMultiObjectiveTermination() else: termination = DefaultSingleObjectiveTermination() return termination class MetaAlgorithm(Meta): """ An algorithm wrapper that combines Algorithm's functionality with Meta's delegation behavior. Uses Meta to provide transparent proxying with the ability to override specific methods. """ def __init__(self, algorithm, copy=True, **kwargs): # If the algorithm is already a Meta object, don't copy to avoid deepcopy issues with nested proxies if isinstance(algorithm, Meta): copy = False # Initialize Meta super().__init__(algorithm, copy=copy) # Pass any additional kwargs to the wrapped algorithm if needed for key, value in kwargs.items(): setattr(self, key, value)